[1]Z. Jiang, H. Teng. Gaseous Detonation Physics and Its Universal Framework Theory. Singapore: Springer, 2022.(專著)
[2]S. Niu, P. Yang, Y. Yang, H. Teng. Numerical study of the effect of a sudden change in inflow velocity on the stability of an oblique detonation reflected wave system (in Chinese). Sci Sin-Phys Mech Astron, 2023, 53, 234711
[3]G. Bakalis, M. Valipour, J. Bentahar, L. Kadem, H. Teng, H. Ng. Detonation cell size prediction based on artificial neural networks with chemical kinetics and thermodynamic parameters. Fuel Communications, 2023, 14, 100084.
[4]K. Yao, P. Yang, H. Teng, Z. Chen, C. Wang. Effects of injection parameters on propagation patterns of hydrogen-fueled rotating detonation waves. international journal of hydrogen energy, 2022, 47 (91), 38811−38822.
[5]A. Wang, J. Bian, H. Teng. Numerical study on initiation of oblique detonation wave by hot jet. Applied Thermal Engineering, 2022, 213, 118679.
[6]P. Yang, H. Li, Z. Chen, C. Wang, H. Teng. Numerical investigation on movement of triple points on oblique detonation surfaces. Physics of Fluids, 2022, 34, 066113.
[7]J. Bian, L. Zhou, P. Yang, H. Teng, H. D. Ng. A reconstruction method of detonation wave surface based on convolutional neural network. Fuel, 2022, 315, 123068.
[8]H. Teng, X. Xi, K. Wang, P. Yang. Instability of wave complex resulting from oblique detonation decoupling. Acta Mechanica Sinica, 2022, 38 (5), 121391.
[9]X. Xi, H. Teng, Z. Chen, P. Yang. Effects of longitudinal disturbances on two-dimensional detonation waves. Physical Review Fluids, 2022, 7 (4), 043201.
[10]H. Teng, Y. Zhang, P. Yang, Z. Jiang. Oblique detonation wave triggered by a double wedge in hypersonic flow. Chinese Journal of Aeronautics, 2022, 35 (4), 176−184.
[11]P. Yang, Z. Zhang, R. Yang, H. Teng, Z. Jiang. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (10), 2853−2864.
[12]C. Yan, H. Teng, H. D. Ng. Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine. Acta Astronautica, 2021, 182, 274−285.
[13]H. Teng, C. Tian, Y. Zhang, L. Zhou, H. D. Ng. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture. Journal of Fluid Mechanics, 2021, 913, A1.
[14]H. Teng; H.D. Ng; P. Yang; K. Wang. Near-field relaxation subsequent to the onset of oblique detonations with a two-step kinetic model. Physics of Fluids, 2021, 33, 096106.
[15]P. Yang, H. D. Ng, H. Teng. Unsteady dynamics of wedge-induced oblique detonations under periodic inflows. Phys. Fluids, 2021, 33, 016107.
[16]H. Teng, J. Bian, L. Zhou, Y. Zhang. A numerical investigation of oblique detonation waves in hydrogen-air mixtures at low mach numbers. International Journal of Hydrogen Energy, 2021, 46 (18), 10984−10994.
[17]J. Bian, L. Zhou, H. Teng. Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydroge-air mixtures. Fuel, 2021, 286, 119458.
[18]K. Wang, P. Yang, H. Teng. Steadiness of wave complex induced by oblique detonation wave reflection before an expansion corner. Aerospace Science and Technology, 2021, 112, 106592.
[19]L. Zhou, H. Teng, H.D. Ng, P. Yang, Z. Jiang. Reconstructing shock front of unstable detonations based on Multi-Layer Perceptron, Acta Mechanics Sinica, 2021, 37(11), 1612−1625.
[20]楊鵬飛, 張子健, 楊瑞鑫, 滕宏輝, 姜宗林. 斜爆轟發動機的推力性能理論分析. 力學學報, 2021, 53(10), 2853-2864.
[21]K. Wang, H. Teng, P. Yang, H.D. Ng. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner. J. Fluid Mech., 2020, 903, A28.
[22]K. Wang, Z. Zhang, P. Yang, H. Teng. Numerical study on reflection of an oblique detonation wave on an outward turning wall. Physics of Fluids, 2020, 32 (4), 046101.
[23]H. Teng, S. Liu, Z. Zhang. Unsteady combustion mode with a super-high frequency induced by a curved shock. Phys. Fluids, 2020, 32, 116101.
[24]G. Xiang, P. Yang, H. Teng, Z. Jiang. Cellular Aluminum Particle-Air Detonation Based on Realistic Heat Capacity Model. Combustion Science and Technology, 2020, 192(10), 1931−1945.
[25]Y. Zhang, L. Zhou, H. Meng, H. Teng. Reconstructing cellular surface of gaseous detonation based on artificial neural network and proper orthogonal decomposition. Combustion and Flame, 2020, 212, 156−164.
[26]H. Teng, L. Zhou, P. Yang, Z. Jiang. Numerical investigation of wavelet features in rotating detonations with a two-step induction-reaction model. International Journal of Hydrogen Energy, 2020, 45 (7), 4991−5001.
[27]滕宏輝, 楊鵬飛, 張義甯, 周林. 斜爆震發動機的流動與燃燒機理. 中國科學:物理學 力學 天文學 2020, 50(9), 090008.
[28]滕宏輝, 姜宗林. 斜爆轟的多波結構及其穩定性研究進展. 力學進展. 2020, 50, 202002.
[29]P. Yang, H. D. Ng, H. Teng. Numerical study of wedge-induced oblique detonations in unsteady flow. Journal of Fluid Mechanics, 2019, 876, 264−287.
[30]C. Yan, H. Teng, X. Mi, H. D. Ng. The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves. Aerospace, 2019, 6 (6), 62.
[31]C. Tian, H. Teng, H. D. Ng. Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution. FUEL, 2019, 252, 496−503.
[32]Y. Zhang, Y. Fang, H. D. Ng, H. Teng. Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution. Combust. Flame, 2019, 204, 391−396.
[33]Y. Fang, Y. Zhang, X. Deng, H. Teng. Numerical study of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures. Phys. Fluids, 2019, 31, 026198.
[34]P. Yang, H. Teng, H. D. Ng, Z. Jiang. Instability of oblique detonation surface with a two-step induction-reaction kinetic model. Proc. Combust. Inst., 2019, 37, 3537−3544.
[35]X. Deng, B. Xie, H. Teng, F. Xiao. High resolution multi-moment finite volume method for supersonic combustion on unstructured grids. Applied Mathematical Modelling, 2019, 66, 404–423.
[36]X. Deng, B. Xie, F. Xiao, H. Teng. New accurate and efficient method for stiff detonation capturing. AIAA Journal, 2018, 56, 4024−4038.
[37]Y. Fang, Z. Hu, H. Teng. Numerical investigation of oblique detonations induced by a finite wedge in a stoichiometric hydrogen-air mixture. FUEL, 2018, 234, 502−507.