1、 高精度航天器在軌微振動分析與高維隔振器設計
高分辨率偵察衛星,激光通訊衛星等高精度航天器具有極高的精度和穩定度需求,對動量輪等星上各種擾動十分敏感,因此微振動抑制是保證其性能指标的關鍵技術。主要研究複雜航天器結構微振動分析、試驗與微振動抑制技術,突破非線性連接結構高精度動力學建模難題,10-6g級别微振動驅動與測試技術,基于可變剛度結構設計的在軌微振動主動與半主動控制技術;基于非線性超結構的高精度航天器超低頻微振動隔振技術,完成一體化的六自由度超低頻隔振器的設計、分析和實驗驗證,實現0.1Hz固有頻率和10-5g級别微振動隔振能力。
2、 液體航天發動機非線性結構振動分析
為保障載人登月、空間站重型構件運送及深空探測等重大航天戰略活動的需求,新一代液體火箭發動機向大推力、高性能、高可靠性、可重複性的目标方向發展。極端惡劣的工作載荷環境使得液體火箭發動機振動劇烈,幾乎所有大型液體火箭發動機在研制或服役過程均發生過振動疲勞導緻的故障。針對液體發動機内部激勵下的結構響應特性問題開展研究,建立包非線性連接結構的整機高精度動力學模型,揭示整機寬頻動力學響應行為;針對渦輪泵轉子的靜态應力過載,動态失穩、流體激振、和渦輪顫振等問題進行理論與試驗分析研究。
3、 高過載環境下微電子與微機電設備沖擊與振動防護
制導武器發射和高速機動過程對陀螺與微電子系統抵抗大沖擊、高過載、溫度驟變等極端惡劣力學環境适應性提出了嚴苛要求,其中沖擊載荷可達2萬g以上。亟需開展極端力學環境下的 微電子與微機電設備沖擊與振動防護,保證微系統在極端高過載環境下的存活和精度穩定。本研究對電子設備在沖擊振動載荷下的響應進行數值仿真和試驗分析,開展結構振動和沖擊防護結構設計。
[1] Zhou, C., Fu, Q., Zhang, X. et al. Nonlinearity reduction in MEMS resonators based on design of H-shaped beams. Acta Mech, 2022, 233: 4903–4918.
[2] 周春燕, 胡博;梳齒結構與振動梁複合的矽微諧振器的非線性分析;伟德客户端學報,2022, 42(4): 390-397
[3] Xiaoying Hu, Chunyan Zhou, The effect of various damping on the isolation performance of quasi-zero-stiffness system; Mechanical Systems and Signal Processing; 2022, 171: 108944.
[4] Xiaoying Hu, Chunyan Zhou, Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic damping. Nonlinear Dynamics, 2022, 107:2153–2175.
[5] 胡曉滢,周春燕; 用于航天器微振動試驗的高靜剛度–低動剛度隔振器研究進展. 航天器環境工程, 2020, 37(4): 315-322.
[6] Xinxing Zhang, Chunyan Zhou, Dynamic analysis of spinning solar sails at deployment process. Chinese Journal of Aeronautics, 2017 30(5): 1719-1728.
[7] Chaofan Wang, Chunyan Zhou, Micro-vibration tests for honeycomb plates of the spacecraft, AIAA Journal, 2016, 54(11): 3652-3658.
[8] Enzhen Xing, Chunyan Zhou, Analysis of the bending behavior of a cable structure under microgravity. International Journal of Mechanical Sciences, 2016, 114:132-140.
[9] 劉健,周春燕.長厚比對正六邊形鋁蜂窩夾層闆等效闆模型動力學計算精度的影響. 複合材料學報, 2016, 33(8): 1838-1847.
[10] 周曉俊,周春燕,張新興,胡海岩; 太陽帆自旋展開動力學地面模拟試驗研究. 振動工程學報, 2015, 28(2):175-182.
[11] Z. Rao, C.Y. Zhou, Z.H. Deng, et al. Nonlinear Torsional Instabilities in a Two-stage Gear System with Flexible Intermediate Shaft. International Journal of Mechanical Sciences, 2014, 82:60–66.
[12] 霍倩,周春燕, 太陽帆航天器展開結構技術綜述; 航天控制, 2013, 31(2):94-99.
[13] 周春燕,餘同希,電子與光電産品設計中的結構動力學問題,力學與實踐,2012:34(6):1-6.
[14] Chunyan Zhou, Dajun Wang, Song Shen, Jing Tang Xing; Nonlinear low frequency gravity waves in a water-filled cylindrical vessel subjected to high frequency excitations; Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences, 2013. 469: 2153.
[15] Chunyan Zhou, Dajun,Wang, Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations – Part II: Theoretical analysis. Communications in Nonlinear Science and Numerical Simulation, 2014,19(4):1128–1141.
[16] Dajun Wang, Chunyan Zhou, Junbao Li, et al. Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations -Part I: experimental study. Communications in Nonlinear Science and Numerical Simulation, 2013,18:1710–1724.
[17] Zhou, C.Y., Yu, T.X., Analytical models for shock isolation of typical components in portable electronics. International Journal of Impact Engineering, 2009, 36(12):1377-84.
[18] Zhou, C.Y., Yu, T.X., Suhir, E., Design of shock table tests to mimic real-life drop conditions. IEEE Transactions on Components and Packaging Technologies,2009,32(4):832-7.
[19] Zhou C.Y., Yu, T.X., Lee, R.S.W. Drop/impact tests and analysis of typical portable electronic devices. International Journal of Mechanical Sciences, 2008,50(5):905-17.
[20] 周春燕,餘同希,李世玮;便攜式電子産品的跌落沖擊響應-試驗, 仿真和理論.力學進展, 2006 36 (2): 239-246.
[21] Dajun Wang, Chunyan Zhou, Jie Rong, Free and Forced Vibration of Repetitive Structures. International Journal of Solids and Structures, 2003, 40:5477–5494.