1.趙瑞,首次火星探測任務先進個人,表彰時間:2022年11月。表彰單位:人力資源社會保障部 國防科工局 工業和信息化部 國資委 中科院 中央軍委政治工作部。
2.趙瑞,2021年伟德客户端科技創新計劃創新人才,高超聲速氣動力熱環境預示與控制,2021-2023
3.趙瑞,2020年全國流體力學青年學術論壇,受邀大會報告,2020.9.27
4.趙瑞,2019年全國工業流體力學會議,受邀大會報告,2019.8.7-12.
5.趙瑞,2018年第十八屆全國激波與激波管學術會議優秀青年論文,中國力學學會激波與激波管專業委員會,國内學術會議優秀論文獎,2018.6.16.
6.趙瑞,2012年度《氣體物理-理論與應用》學報青年優秀論文獎,《氣體物理-理論與應用》編委會, 青年優秀論文獎, 2012.12.18
7.趙瑞, 第十五屆全國計算流體力學會議優秀論文,第十五屆全國計算流體力學會議組委會,國内學術會議優秀論文獎, 2012.08.15
8.趙瑞,2017年度伟德客户端優秀班主任
9.趙瑞,2016年度伟德客户端優秀班主任
10.趙瑞,2014年度伟德客户端優秀青年教師
教學工作:
本科生課程《流場仿真與風洞試驗實踐》《空氣動力學》《Computational fluid dynamics》《氣動彈性基礎》;
研究生課程《粘性流體力學》
近年來主要發表論文
教材:
1.趙瑞,等《湍流與轉捩數值模拟方法》,ISBN:978-7-5640-7626-9,2019.2
論文:
[1]Stabilization mechanisms of various acoustic metasurfaces on the second mode in hypersonic boundary-layer flows, Physics of Fluids,2023, online
[2]Effect of Acoustic Metasurface on Hypersonic-Boundary-Layer Wave Packet, Physics of Fluids,2023, online
[3]Energy growth of vortical, acoustic, and entropic components of the second-mode instability in the hypersonic boundary layer. Physics of Fluids, 2023,35 (5): 054104.
[4]Broadband design of acoustic metasurfaces for the stabilization of a Mach 4 boundary layer flow. Advances in Aerodynamics 4, 15 (2022).
[5]Stabilization effect of acoustic metasurfaces on broadband disturbances in a Mach 6 boundary-layer flow. Physics of Fluids 2022; 34 (12): 121706.
[6]Review of Acoustic Metasurfaces for Hypersonic Boundary Layer Stabilization. Progress in Aerospace Sciences, Vol. 130, No.100808, 2022.
[7]Assessment and Improvement of K-ω-γ Model for Separation-Induced Transition Prediction [J]. Chinese Journal of Aeronautics, 35(11), 219-234, 2022.
[8]Performance Deterioration of Pitot Tubes Caused by In-Flight Ice Accretion: A Numerical Investigation.” International Journal of Aerospace Engineering, Vol. 2021, 5599116, pp. 1–18.
[9]Mechanism of stabilization of porous coatings on unstable supersonic mode in hypersonic boundary layers, Physics of Fluids. 33 (2021) 054105.
[10]Control of Reflected Waves with Acoustic Metasurfaces for Hypersonic Boundary-Layer Stabilization, AIAA Journal, 59(6), 1893–1898, 2021.
[11]Spatial Direct Numerical Simulation of the Hypersonic Boundary-Layer Stabilization using Porous Coatings [J], AIAA Journal, 57(11), 5061-5065, 2019.
[12]Theoretical Modeling of Porous Coatings with Simple Microstructures for Hypersonic Boundary-Layer Stabilization [J], AIAA Journal, 58(2), 981–986, 2020.
[13]Reverse Design of Ultrasonic Absorptive Coating for the Stabilization of Mack Modes [J], AIAA Journal, 57(6),2264-2269,2019.
[14]Impedance-Near-Zero Acoustic Metasurface for Hypersonic Boundary-Layer Flow Stabilization [J], Physical Review Applied, 11, 044015, 2019. (SCI)
[15]Application of improved k-ω-γ transition model to hypersonic complex configurations [J], AIAA Journal , 57(5),2214-2221,2019.
[16]Theoretical Modeling and Optimization of Porous Coating for Hypersonic-laminar-flow Control [J], AIAA Journal,56(8),2942-2946,2018
[17]CFD design of ventilation system for large underground bus terminal in Macau Barrier Gate [J], Journal of Wind Engineering & Industrial Aerodynamics, 179, 1-13, 2018
[18]An investigation of interface conditions inherent in detached-eddy simulation methods [J], Aerospace Science and Technology. 74,46-55,2018.
[19]A combined criteria-based method for hypersonic three-dimensional boundary layer transition prediction [J], Aerospace Science and Technology. 73, 105–117, 2018.
[20]Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer [J]. International Journal of heat and mass transfer 121, 986-998, 2018.
[21]An entropy-assisted shielding function in DDES formulation for the SST turbulence model [J], Entropy. 19, 93, 2017.
[22]Entropy-based detached-eddy simulation of the airwake over a simple frigate shape [J], Advances in Mechanical Engineering, 7(11), 1-13, 2015
[23]Entropy and its application in turbulence modeling [J], Science Bulletin, 59(31),4137-4141, 2014
[24]Towards an entropy-based detached eddy simulation [J], SCIENCE CHINA Physics, Mechanics & Astronomy, 56(10),1970-1980,2013
[25]A new kind Baldwin-Lomax turbulence model under the limit of entropy [J], Chinese Journal of Aeronautics, 26(3),529-534,2013
[26]Scale-Adaptive Simulation of flow over wavy cylinders at a subcritical Reynolds number [J], Acta Mechanica Sinica, 27(5), 660-667, 2011
[27]Comparative assessment of PANS and DES for simulation of flow past a circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 134, 65-77, 2014
[28]延遲高超聲速邊界層轉捩技術研究進展[J].航空學報,2021:1-15.
[29]聲學超表面抑制高速邊界層内寬頻不穩定模态研究[J].北京航空航天大學學報,2021:1-14
[30]高超聲速飛行器複雜外形轉捩預測[J].氣體物理,2021,6(05):26-33.
[31]聲學超表面抑制第一模态研究[J].航空科學技術,2020,31(11):104-112.
[32]不同艦船機庫外形下艉流場特征數值模拟研究[J]. 船舶力學.23 (05):512-522,2019
[33]聲學超表面抑制Mack第2模态機理與優化設計[J]. 氣體物理. 3(06):35-40, 2018
[34]火星進入器壁面脈動壓力環境數值模拟研究[J],宇航學報,39(5),482-490,2018
[35]火星進入器作強迫震蕩運動壁面脈動壓力數值模拟[J].宇航學報,40(02):148-155,2019.
[36]一種新型的動态RANS/LES混合方法[J],推進技術[J], 38(9),1950-1955,2017
[37]艦船艦面空氣流場特性研究進展[J]. 船舶力學. 22(11):1431-1444, 2018
[38]整流罩母線形狀對脈動壓力環境的影響研究[J],兵工學報,38(5),1020-1026,2017
[39]一種改進的跨聲速旋成體壁面脈動壓力經驗預測公式[J],宇航學報,37(10),1179-1184,2016.
[40]Definition of turbulent boundary-layer with entropy concept [J]. MATEC Web of Conferences, 77: 02005, 2016.
[41]火箭整流罩外氣動噪聲環境的大渦模拟研究 [J], 宇航學報,36(9),988-994,2015.
[42].比熵增概念及其在湍流模型中的應用[J],空氣動力學報,31(3),381-387,2013
[43]Detailed investigation of detached-eddy simulation for the flow past a circular cylinder at Re=3900 [J], Applied Mechanics and Materials Journal, 232,471-476,2012
[44]基于熵限制的Baldwin-Lomax 湍流模型[J],北京航空航天大學學報,38(2),175-190,2012
[45]超聲速複雜流動中湍流模型的性能評估[J],北京航空航天大學學報,37(2),202-205,2011
[46]壁面溫度條件對邊界層轉捩預測的影響[J]. 航空學報. 2013,(10):2249-2255.
[47]γ-Reθ模式應用于高速邊界層轉捩的研究[J]. 空氣動力學學報. 2013,(01):120-126.
[48]XY-SAS模型對于分離流動的性能分析[J]. 北京航空航天大學學報. 2010,(04):415-419.
近年來部分項目:
1.2023.01-2026.12,聲學超表面對高超聲速邊界層内擾動模态的作用機理研究(12272049),國家自然科學基金面上項目
2.2021.8-2022.7,XXX作用機理研究,JKW基礎加強計劃重大基礎研究項目
3.2020.10-2022.10,XXX數值模拟軟件研究,國防科工局工業軟件項目
4.2021.7-2024.7,Investigation on the Control Strategy and Mechanism of Multi-modes in High-speed Boundary-Layer Transition,GRF香港基礎研究基金項目
5.2019.01-2022.12,聲學超表面對高超聲速邊界層轉捩的抑制機理與應用研究(11872116),國家自然科學基金面上項目
6.2019.12-2023.06,XXX轉捩控制機理的理論分析及數值研究,XXX重大基礎研究
7.2018.06-2021.06,Investigation and Optimization of Porous Coatings on the Stabilization of Hypersonic Boundary-Layer Flows,GRF香港基礎研究基金項目
8.2016.05-2016.12, XXX氣動外形設計及氣動計算, 北京空間飛行器總體設計部
9.2017.09-2018.06, 再入飛行器氣動外形設計及氣動仿真技術研究, 北京空間飛行器總體設計部
10.2017.08-2018.10, 着陸巡視器脈動壓力計算分析, 北京空間飛行器總體設計部
11.2017.08-2018.08, 着陸巡視器自由飛動态模拟, 北京空間飛行器總體設計部
12.2017.09-2018.07, 火星上升器氣動布局優化與局部結構優化設計, 北京空間飛行器總體設計部
13.2017.09-2018.06, 火星上升器動穩定性數值模拟, 北京空間飛行器總體設計部
14.2016.03-2018.03, 新一代載人飛船試驗船取壓孔位置及壓力系數研究, 北京空間機電研究所
15.2015.01-2017.12,一種基于熵概念的湍流邊界層判别準則及其在湍流模式中的應用研究(11402024),國家自然科學基金青年項目。