1、燃燒、顆粒、能源動力領域國際頂級SCI期刊審稿人:Combustion and Flame, Proceedings of the Combustion Institute, Carbon, Physical Chemistry Chemical Physics, Fuel, Energy&Fuels, Journal of Physical Chemistry A, Defense Technology等
2、國際期刊Energies特邀編輯
[1]Q. Mao, M. Feng, X.Z. Jiang, Y. Ren, K.H. Luo, A.C.T. van Duin, Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems, Prog Energy Combust Sci. 97 (2023).
[2]Y. Xu, Q. Mao*, Y. Wang, K.H. Luo, L. Zhou, Z. Wang, H. Wei, Role of ammonia addition on polycyclic aromatic hydrocarbon growth: A ReaxFF molecular dynamics study, Combust Flame. 250 (2023).
[3]Y. Wang, Q. Mao*, Z. Wang, K.H. Luo, L. Zhou, H. Wei, A ReaxFF molecular dynamics study of polycyclic aromatic hydrocarbon oxidation assisted by nitrogen oxides, Combust Flame. 248 (2023).
[4]Y. Wang, L. Zhou, Q. Mao*, Z. Wang, H. Wei, Pyrolysis and oxidation of benzene and cyclopentadiene by NOx: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics. (2023).
[5]R. Langer, Q. Mao*, H. Pitsch, A detailed kinetic model for aromatics formation from small hydrocarbon and gasoline surrogate fuel combustion, Combust Flame. (2022).
[6]M. Baroncelli, Q. Mao*, H. Pitsch, N. Hansen, Effects of C1-C4 hydrocarbon blending on aromatics formation in 1-butene counterflow flames, Combust Flame. 230 (2021).
[7]Q. Mao*, L. Cai, R. Langer, H. Pitsch, The role of resonance-stabilized radical chain reactions in polycyclic aromatic hydrocarbon growth: Theoretical calculation and kinetic modeling, Proceedings of the Combustion Institute. 38 (2021).
[8]Q. Mao*, C. Huang, M. Baroncelli, L. Shen, L. Cai, K. Leonhard, H. Pitsch, Unimolecular reactions of the resonance-stabilized cyclopentadienyl radicals and their role in the polycyclic aromatic hydrocarbon formation, Proceedings of the Combustion Institute. 38 (2021).
[9]Q. Mao*, L. Cai, H. Pitsch, Theoretical analysis and kinetic modeling of hydrogen abstraction and addition of 1,3-cyclopentadiene and associated reactions on the C5H7 potential energy surface, Combust Flame. 222 (2020).
[10]Q. Mao, J. Zhou, K.H. Luo*, A.C.T. van Duin, Atomistic insights into the dynamics of binary collisions between gaseous molecules and polycyclic aromatic hydrocarbon dimers, Physical Chemistry Chemical Physics. 21 (2019).
[11]Q. Mao, K.H. Luo*, Trace metal assisted polycyclic aromatic hydrocarbons fragmentation, growth and soot nucleation, Proceedings of the Combustion Institute. 37 (2019).
[12]Q. Mao, D. Hou, K.H. Luo*, X. You, Dimerization of Polycyclic Aromatic Hydrocarbon Molecules and Radicals under Flame Conditions, Journal of Physical Chemistry A. 122 (2018).
[13]Q. Mao, Y. Ren, K.H. Luo*, A.C.T. van Duin, Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons, Journal of Chemical Physics. 147 (2017).
[14]Q. Mao, A.C.T. van Duin, K.H. Luo*, Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A ReaxFF molecular dynamics study, Carbon. 121 (2017).
[15]Q. Mao, A.C.T. van Duin, K.H. Luo*, Investigation of methane oxidation by palladium-based catalyst via ReaxFF Molecular Dynamics simulation, Proceedings of the Combustion Institute. 36 (2017).
[16]Q. Mao, Y. Ren, K.H. Luo*, S. Li, Sintering-Induced Phase Transformation of Nanoparticles: A Molecular Dynamics Study, Journal of Physical Chemistry C. 119 (2015).
[17]Q. Mao, K.H. Luo*, Molecular Dynamics Simulation of Sintering Dynamics of Many TiO2 Nanoparticles, J Stat Phys. 160 (2015).